Published as a conference paper at COLM 2024

SKVQ: Sliding-window Key and Value Cache Quantization
for Large Language Models

Haojie Duanmu* Zhihang Yuan* Xiuhong Li'
Shanghai Al Laboratory Houmo Al Peking University
Shanghai Jiao Tong University

Jiangfei Duan Xingcheng Zhang Dahua Lin

CUHK Shanghai Al Laboratory CUHK

Shanghai Al Laboratory Shanghai Al Laboratory
Abstract

Large language models (LLMs) have demonstrated the capability to process
extended token sequences, enabling complex tasks such as book comprehen-
sion and long-form text generation. However, as context length increases,
the key-value (KV) cache required for LLMs consumes substantial mem-
ory, becoming a bottleneck for deployment. This paper introduces SKVQ
(Sliding-window KV cache Quantization), a strategy designed to address
the challenge of extremely low bitwidth KV cache quantization. SKVQ re-
arranges the channels of the KV cache to enhance channel similarity within
quantization groups and applies clipped dynamic quantization at the group
level. Furthermore, SKVQ maintains high precision for the most recent
window tokens in the KV cache, preserving accuracy for a small yet critical
portion of the cache. Our evaluation of LLMs demonstrates that SKVQ
achieves high compression ratios while maintaining accuracy, outperform-
ing previous quantization methods. SKVQ enables the quantization of
the KV cache to 2-bit keys and 1.5-bit values with minimal accuracy loss.
This advancement allows processing context lengths of up to 1M tokens on
an 80GB GPU for a 7B parameter model, resulting in up to 7 times faster
decoding.

1 Introduction

Large Language Models (LLMs) have recently demonstrated remarkable success in artificial
intelligence. As LLMs advance, the demand for extended context support has increased.
For instance, OpenAl GPT-4 Turbo can handle 128k tokens (Achiam et al., 2023), and Google
Gemini 1.5 can process up to 1 million tokens (Team et al., 2023). This expanded token
capacity enables LLMs to address more complex tasks, including book comprehension, large
image analysis, and video processing, enhancing their versatility. LLM inference operates in
an auto-regressive manner, generating sentences token by token. To reduce the computation
overhead, inference system always store key and value activations in memory known as the
key-value (KV) cache, for reuse during subsequent token generation. With the increasing
popularity of utilizing LLM for long sequence tasks, the KV cache consumes a significant
amount of memory. On the other hand, the large amount of KV cache can also bring a large
amount of memory access in the attention mechanism when generating the output tokens.
The system will be stuck on the memory access, known as the memory-bound problem in
LLM inference (Yuan et al., 2024).

To tackle the problem of large KV cache size in language models, several compression
techniques have been proposed. One approach is KV eviction (Zhang et al., 2023), which

*Equal Contribution
*Correspondence to: lixivhong@pku.edu.cn

Published as a conference paper at COLM 2024

involves removing less important key-value pairs from the cache to free up space. However,
this may impact the accuracy of inference. Another method is KV offloading (Sheng et al.,
2023), which transfers a portion of the KV cache to slower but larger storage devices like
main memory and even secondary storage. However, this may slow down the system due to
the low bandwidth of these devices. Scientists have recently been studying the compression
of KV cache using quantization. This involves converting floating point KV cache, which
initially utilizes a large number of bits, into a format that uses fewer bits. Several novel
approaches have been developed to accomplish this, including KVQuant (Hooper et al.,,
2024), WKVQuant (Yue et al., 2024), and KIVI (Liu et al., 2024). Previous quantization
methods have been successful in reducing memory requirements and the number of memory
accesses. However, they faced a challenge when using very low-bitwidth quantization
because it led to a significant decrease in accuracy, as shown in Figure 1.

nificant difference in the distribution of differ-

ent channels during the quantization process.] /
This has a great impact on quantization accu- 251
racy, especially in extremely low-bitwidth sce- £ 50|
narios. To alleviate this problem, we propose @

In this paper, we observe that there is a sig-

the clipped dynamic quantization with channel s
reorder. First, we use a transformation invariant 104 —e— SmoothQuant
permutation to group similar channels based on 51 Rasill]
their statistical characteristics. Second, we apply T S
li d d . tizati t £ th iti- 18 19 20 21 22 23 24 25
clippe yhamic quantization to rurther miti Average bits of element in KV Cache

gate the outlier problem. In this way, we greatly
reduce the quantization error within each group, Figure 1: Results on GovReport and

thus improving the accuracy of the quantized MultiFieldQA-zh (Mistral-7b-Instruct-V0.2).
model. We count the storage for meta data includ-

ing quantization params and reorder index.

Meanwhile, we discover that the protecting the

accuracy of these small portion of but more important caches in KV cache quantization
is critical. Due to the locality of attention, these recently generated KV caches are highly
likely to be attended to with a high probability. We propose a sliding window quantization
strategy. This mechanism preserves a small portion of the most recently generated KV cache
from being quantized. After generating new tokens, the probability of attending to the old
tokens’ KV cache decreases significantly, so the accuracy loss caused by quantizing them
is minimal. The proposed method is named as sliding-window KV cache quantization
(SKVQ). It is efficient and easy to implement in existing inference system, which makes it
practical for real-world deployment.

To evaluate the effectiveness of our method, we experiments on models of LLaMA (Touvron
et al., 2023) and Mistral (Jiang et al., 2023) family. The experiments show that our methods
can quantize the key cache into 2 bits and value cache into 1.5 bits with almost no accuracy
drop. Compared with the previous quantization method, our approach can achieve optimal
performance under different average bit widths as shown in Figure 1. Our performance
analysis shows SKVQ enables 1M context length in a single A100-80GB for a 7b model.
As for the inference latency, in the case of batch size 128 and sequence length 200k, the

theoretical 7x speedup in decoding phase can be achieved !.

2 Related Work

There are many multi-billion scale transformer quantization methods designed for LLMs.
A main branch of LLM quantization is weight-only quantization, which only involves the
quantization of model weights to lower precision. For instance, GPTQ (Frantar et al., 2022)
uses second-order approximation to quantize weights, enabling the weight quantization of
LLMs into 4-bit. AWQ (Lin et al., 2023) quantizes model weights to 4bits whith an activation-
aware manner. SqueezeLLM (Kim et al., 2023) adopts the concept of sensitivity-based

1The performance analysis can be found in Appendix 9

Published as a conference paper at COLM 2024

Original Key Cache =) Channel Reorder = Group Clipping
g2 94

0 20 40 80 100 120

60
Channel

Figure 2: Visualization of the key cache going through channel reorder and group clipping
in sequence. The elements in the red/green box will be placed in the same group to share
the quantization parameters.

non-uniform quantization along with Dense-and-Sparse decomposition. This line of work
is orthogonal to ours, as they can be combined together.

Another line of work focuses on weight-activation quantization. llm.int8() (Dettmers et al.,
2022) retain outlier channel to full precision, so that other parts can be better compressed
to 8bits. SmoothQuant (Xiao et al., 2022) uses equivalent transformations to balance the
quantization complexity for both activation and weight, making the activation easier to
quantize. RPTQ (Yuan et al., 2023) reorder the channels to reduce the variance in one
quantization cluster, further enhancing the accuracy. ATOM (Zhao et al., 2023) improves
quantization performance and reduces inference latency by using finer-grained quantization
with an efficient kernel. However, since these works are not specifically designed for KV
cache quantization, even applying the best results from such works still results in significant
losses in KV cache compression. We compare with these works in the experimental section.

Recently, as natural language tasks require processing longer contexts, researchers have
focused on quantizing key-value caches. Several new methods have been developed, such
as KVQuant (Hooper et al., 2024), WKVQuant (Yue et al., 2024), and KIVI (Liu et al., 2024).
Quantizing the KV cache can significantly reduce both the memory requirements and the
number of memory accesses needed. Our experimental results show that the performance
of our method on long context tasks performs the best in this type of work.

There are also a series of work dedicated to the design of KV cache eviction strategy (Liu
etal., 2023; Ge et al., 2023; Zhang et al., 2023; Xiao et al., 2023). Unlike KV cache quantization,
which retains all caches but compresses them to low precision, these methods selectively
retain part of the KV cache and discard other caches directly. These methods usually allocate
a fixed-size buffer for KV cache . When the generated KV cache exceeds the buffer limit,
some tokens considered less important will be evicted from the buffer. These methods
are inevitably and irrecoverably discarding KV pairs deemed, in one way or another, less
important than others. Our approach is inspired by and can be well integrated with such
work.

3 Method

3.1 Clipped Dynamic Quantization with Channel Reorder

Quantization is to transform the high-bitwidth float values into low-bitwidth integer values.

The quantization process can be formulated as clamp(LX;Z], 0,2N — 1), where X is the
float values and # is scaling factor and z is zero point. Previous studies have highlighted
significant variations in numerical values among activation channels (Xiao et al., 2022; Wei
et al., 2022; 2023). As shown in Figure 2, we also observe substantial variations between
channels and tokens in the KV cache (high channel variance). Therefore, directly quantizing
the KV cache leads to substantial quantization errors. If values in different channels share the
scaling factor and zero point, the value from outlier channels skew the quantization range.
Especially in the low-bitwidth case, this makes almost all elements except outlier channel

Published as a conference paper at COLM 2024

quantize to the same value, and this loss of information leads to significant performance
drop. To tackle this issue, we introduce channel transformation based quantization.

To address this problem, some methods have proposed using additional quantization
parameters or keeping certain channels in float format to handle outliers (Dettmers et al.,
2022). However, we have noticed that the concept of outliers is relative. The channels
with the highest values are outliers compared to the medium-sized channels, and the
medium-sized channels are outliers compared to the small-sized channels. Other methods
propose smoothing the difference between channels by multiplying an extra factor before
quantization (Shao et al., 2023; Yue et al., 2024). However, these methods do not take
into account the differences in token dimension(sequence length dimension) of KV cache.
The magnitude of values can vary between different tokens. We have observed that the
variation in magnitude of non-outlier channels is relatively high. Specifically, some channels
experience magnitude changes of several times or even dozens of times. Smoothing is not
effective in addressing this phenomenon, especially in extremely low bitwidth quantization.

Channel Reorder. Inspired by RPTQ(Yuan et al., 2023), we employ a permutation invariant
transformation and then apply group clipping to solve the problem of extremely low
bitwidth quantization for KV cache . The permutation invariant transformation allows us
to change the order of computation without changing a operation’s output. For example,
when we execute the matrix multiplication S = Q x KT, we can rearrange the columns of
Q and the rows of K (which represent their channel dimension) in the same order without
affecting the result of the computation.

We perform channel reorder on KV cache to make channels with similar data distribution
are grouped together for quantization. Values in channels with similar distribution are
quantized together. By this way, we can greatly reduce the quantization error of channels
with smaller ranges. The same as Yuan et al. (2023), we do the corresponding equivalent
permutation for Q and W, to avoid explicit reorder operation. The calculation of attention

module O = Softmax(QKT) - V - W, is transformed as:
O = Softmax(P,Q - (KTPI)) - P,V - W, P} 1)

where P, € R *Cin and P, € R *Cin are channel reorder matrix of Key and Value

respectively 2 Inour algorithm, the index is calculated based on the statistical characteristics
of each channel. Specifically, we extract the distribution feature of each channel and then
use the KMeans algorithm to cluster channels with similar characteristics into the same
group. We also compared channel reordering with mathematical equivalent smoothing, and
the results in Appendix 10 demonstrated the effectiveness of the former.

Clipped Dynamic Quantization. Dynamic per-token quantization is widely used method
for quantizing the activations in LLMs (Xiao et al., 2022). Different with static quantization
that use the static & and z, dynamic quantization will compute new / and z using the
max(X)—min(X) z = mh];(X)'

maximum value and minimum value for each token: 1 = N1 ,

Previous work about weight quantization (Lin et al., 2023; Shao et al., 2023) has shown that
introducing clipping when quantizing weights can improve the quantization performance.
According to the second picture in Figure 2, even though we have grouped similar channels
together, there are inevitably some outliers within a quantization group. In order to reduce
the impact of these outliers on other values in the same group, we propose the clipped
dynamic quantization, which can be formulated as:

fla,X) = clamp([%],O,ZN —1),where h = uc(max(;(]\)] ;mn(X)),Z = aml;(x). (2)
We introduce a clipping scale a € (0, 1] for each group to compute & and z. In order to get
the best clipping scale, for each transformer block we try to minimize the MSE of the output
of the attention module before and after quantization, i.e., the optimization objective:

o =argmin L(a), L(x)=MSE(0%,0) ©)]

2We fuse the channel reorder index into the the projection weight matrix of attention module. We
describe the fusion in the Appendix 6.

Published as a conference paper at COLM 2024

| Pl
Clipped Dynamic Quantization
With Channel Reorder
o channel reordering

1]
] 1
1 1
1 1
]]
I « group clipping 1
. -1 i i 1

_): per-token quantization .
] 1

1 1

1 1

] 1

1]

] 1

[Quantized Cache

|:| Full-Precision Cache Time Step t W_q

[sliding Window

attention sink Time Step t1 J

Key Cache
] 'élleliu]e;'l""-
! « attention sink [
: : heavy' '}?itters : @
Q¢4 1
N B | D Q [T
\ | L LTI LTI {

Figure 3: Overview of sliding window quantization Strategy. In each time step, we ensure
the latest w KV cache is full precision. For a token cache that slides out of the window, we
make a decision based on the filter rules and choose whether to retain it to high precision.

where O1 is the output of attention module after quantizing KV cache. Unlike weight-only
quantization, the KV cache is generated at runtime, it is costly to solve this optimization
for each inference. Therefore, we approximate it by offline calibration. By performing
optimization on a calibration dataset in advance, we get the approximate &* for each group.
We share the same &* across different tokens. Using the approximate &*, we can also improve
the quantization performance without introducing significant inference cost.

Using channel reorder and clipped dynamic quantization, the elements falling within the
same group can more fully utilize the numerical range of the quantized data type, thus
reducing the quantization error. Because all the parameter Py, P, « is determined offline
and the reorder operation can be fused into linear layers, it is efficient to implement the
clipped dynamic quantization with channel reorder on existing inference frameworks.

3.2 Sliding Window Quantization Strategy

Although clipped dynamic quantization with channel reorder can improve the quantization
performance to a large extent, extremely low-bitwidth KV cache quantization still suffers
serious performance degradation, especially when the sequence length become longer. This
is because the quantization errors accumulate along the sequence dimension. Because the
auto-regressive manner of the LLM, the decoding of a new token depends on the previous
KV generated. We realize that this not only a challenge but also a chance, the auto-regressive
manner can be fully exploited to develop more flexible quantization strategies.

Locality. Previous research has demonstrated that attention modules exhibit strong local-
ity (Kovaleva et al., 2019; Beltagy et al., 2020; Ge et al., 2023). This locality implies that at
each time step, the attention module focuses more on recently generated tokens. We posit
that in KV cache quantization, preserving the accuracy of a small but critical portion of the cache
is more important than maintaining the larger, less significant content from earlier in the sequence.

Motivated by this observation, we propose a sliding window quantization strategy that
maintains high precision for the most recent KV cache of a window of w tokens. The work-
flow, illustrated in Figure 3, consists of two phases: 1) Prefill phase: For each transformer
block, after generating the KV cache, we first compute attention using full-precision KV

Published as a conference paper at COLM 2024

cache. We then quantize the KV cache, reserving the last w token cache pairs at full precision.
2) Decode phase: We process only the token that slides out of the window at each time step.
This approach ensures lossless KV cache generation for each transformer block during the
prefill phase. It also enhances the quality of generated content by leveraging the locality of
the attention module in the decode phase.

Important KV Cache Filter. Beyond recently generated tokens, certain tokens are particu-
larly sensitive to quantization. We explored additional methods to identify critical tokens
whose KV cache should be maintained at high precision. Inspired by (Xiao et al., 2023), we
recognized that the initial tokens of a prompt are crucial for the entire generation process.
Consequently, we incorporated an attention sink into our filter rules, reserving the first few
tokens at high precision. We observed that maintaining a small number of sink tokens at
high precision is effective. Given the fixed positions of sink tokens, this approach is easily
implementable and was enabled in our experiments. Some cache eviction methods, such
as those proposed by (Liu et al., 2023; Zhang et al., 2023), monitor each token’s cumulative
attention score, treating these scores as token frequency and retaining only the most fre-
quent tokens (heavy hitters) in the KV cache. While keeping heavy hitters at high precision
seems intuitive, we did not implement this approach in our experiments for two reasons:
1) The improvement on prediction accuracy by keeping heavy hitters high precision is not
significant. 2) When using FlashAttention (Dao, 2023), directly obtaining attention scores is
challenging, making implementation in existing inference frameworks problematic.

We anticipate that superior methods for identifying important KV caches may emerge.
Therefore, we have maintained this as an interface (filter rules in Figure 3) in our implemen-
tation, allowing for the integration of new filters in future research.

By preserving a small portion of tokens at high precision, we achieve substantial perfor-
mance gains in long-context tasks while incurring minimal additional overhead. The impact
of window size on quantization performance will be discussed in Section 4.3.

4 Experiments

In this section, we introduce the detailed experimental settings and evaluate the effectiveness
of the proposed SKVQ.

4.1 Settings

Models. We select a wide range of models with different architectures and different size to
demonstrate the generalizability of our approach: Llama2-13b (Touvron et al., 2023), and
models fine-tuned based on Llama2: Llama2-7b-chat, Llama2-13b-chat, Llama2-7b-80k (Fu
et al., 2024), Vicuna-v1.5-7b-16k (Chiang et al., 2023), LongChat-v1.5-32k (Li et al., 2023).
We also evaluate models of Mistral family which are recently very popular: Mistral-7b-
v0.1(Jiang et al., 2023), Mistral-7b-instruct-v0.2. Among these models, models of Llama
family adopt multi-head attention, mistral-7b-instruct-v0.2 uses multi-query attention, and
mistral-7b-v0.1 uses multi-query attention and sliding-window attention.

Tasks. We evaluate SKVQ mainly on long sequence tasks, as this is the scenario for which
KV cache quantization is most suitable. We use LongBench (Bai et al., 2023) to evaluate
on various datasets. Specifically, MultiFieldQA-zh (F1 score) is a Single-Document QA
task; 2WikiMultihopQA is a Multi-Document QA task; GovReport (ROUGE score) is a
Summarization task; TREC (classification score) is a Few-shot Learning task; and LCC
(similarity score) and RepoBench-P (similarity score) is Code Completion task. We also
tested SKVQ on Needle-in-a-Haystack (Kamradt, 2023), which is a popular test-bed for
whether models can actually utilize long context length. It requires the model to recite the
information in a given sentence, which is placed anywhere in a long document. Finally,
to provide a clearer picture of the effects of the SKVQ components and to compare with
previous methods, we also measure the perplexity on wikitext2 (Merity et al., 2016) in
Section 4.3.

Published as a conference paper at COLM 2024

Model Method LCCt RepoBench-PT PR-en? TRECT 2wikimqal GovReportf MQA-zh1 Average!
FP16 52.33 44.05 10.25 63 32.09 27.29 11.39 38.50
RTN 15.44 8.76 0.79 4.00 0.30 1.93 0.07 6.76
Llama-2-7B-chat SmoothQuant 35.31 32.18 0.79 28.75 7.45 11.83 1.68 21.92
RPTQ 2237 19.08 5 47.5 15.57 20.07 3.24 19.50
KIVI 49.32 43.71 4.50 63 24.07 24.73 10.24 35.91
SKVQ 50.69 454 5.5 63 28.5 27.07 10.7 37.50
FP16 50.54 52.1 15.25 68.5 13.21 27.52 7.23 38.83
RTN 20.89 18.62 0.33 0 0.52 1.68 0.16 10.15
Llama-2-13B-chat SmoothQuant 32.17 33.86 2.65 48 3.53 1247 047 23.22
RPTQ 49.18 47.63 5.25 63.5 10.92 23.83 4.54 35.01
KIVI 48.6 48.81 13.5 68 14.32 25.7 7.01 37.21
SKVQ 49.53 49.76 12.25 67.5 14.03 26.68 6.63 37.53
FP16 68.06 60.46 17.71 68 10.87 20.09 17.1 45.51
RIN 27.98 26.18 3.34 13 1.11 249 0.45 15.58
Mistral-7B SmoothQuant 40.63 35.14 3.40 30.5 6.03 5 4.12 23.85
RPTQ 55.29 4712 5.11 59.5 9.71 7.81 12.36 35.05
KIVI 65.16 58.33 12.43 65 11.03 13.22 13.87 42.43
SKVQ 67.81 60.54 13.21 67 10.91 17.72 15.9 43.47
FP16 55.07 48.96 60 70 22.63 31.18 42.74 48.66
RTN 32.36 33.23 0.67 1 225 10.03 2.3 18.02
Mistral-7B-Instruct SmoothQuant 43.84 38.63 4.79 39.5 10.34 23.61 8.33 29.27
RPTQ 46.85 44.07 27.67 64.5 16.99 28 24.68 38.91
KIVI 53.13 48.6 47.5 69 20.68 29.37 33.88 4548
SKVQ 54.86 49.05 56.42 70 20.94 30.82 424 46.23

Table 1: Evaluation of different KV cache quantization methods on LongBench. Group-
size(average) 128, key-cache 2bit, value-cache 2bit, window-size 128. We abbreviated
PassageRetrieval as PR and MultiFieldQA as MQA. We highlight the result of our method.

Quantization. Both channel reorder and clipped dynamic quantization requires offline
calibration. For calibration dataset, we select 256 pieces of data with length 4096 from
the training set of wikitext2-v1, the calibration takes about a few minutes which is quite
lightweight. We perform asymmetric quantization in all experiments. We have explored the
FP8(E4M3) datatype to store scale and zero-point. Our experiment results in Table 3 show
that FP8 will bring almost no performance degradation, but significantly reduces overhead
at extremely low bit-width and fine grained groups.

4.2 Main Results and Analysis

Key 2bits, Value 1.5 bits, Group Size 64

LongBench Results. The performance of SKVQ in
the LongBench datasets is summarised in Table 1.
We compare our method with SmoothQuant (Xiao
et al., 2022), RPTQ (Yuan et al., 2023) KIVI (Liu et al.,
2024) and vanilla asymmetric per-token uniform
RTN(Round To Nearest) quantization. SmoothQuant

Mistral

v
o

IS
S

w
S

N
5]

Llama

Average Score

and RPTQ are LLM weight-activation quantization
schemes. We use them to quantize KV cache with-
out involving model weights and other activation.
KIVI (Liu et al., 2024) is a recent 2-bit asymmetric
quantization scheme specially designed for KV cache.
Wg set the group size of gll the methods to 128. S_KVQ of SKVQ for Llama2-7b-chat and Mistral-
utilizes reordering which leads to unequal size of 7 _nstruct-v0.2.

each group. In order to ensure the fairness of the comparison, we control the number of
groups in SKVQ to ensure the average group size is 128. The window size in SKVQ is
set to 128 and the residual length in KIVI is set to 128. a in SmoothQuant is set to 1.0
to make the smooth transformation completely inclined to KV cache . Table 1 suggests
that SKVQ is an effective method for KV cache compression that outperforms previous
quantization approaches across various hard long context generation tasks. We also evaluate
Vicuna-v1.5-7b-16k and LongChat-v1.5-7b-32k, the results is in Appendix 8.

For all models tested, the accuracy drop of SKVQ is less than 5%. Towards extremely
low-bitwidth KV cache quantization, we further quantize the key cache into 2 bits and value
cache into 1.5 bits with group size 64. The result in Figure 4 shows that SKVQ can compress
key cache into 2 bits and value cache into 1.5 bits with almost no accuracy drop. It is worth
noting that the experimental results are under the setting of group size 128. SKVQ can

,_.
o

04 1
FP16 FP16

SKVQ RTN SKVQ RTN

Figure 4: Average score on LongBench

Published as a conference paper at COLM 2024

FP16: 268.5 KIVI-K2V2-g128: 244.5 SKVQ-K2V1.5-g128: 272.2

Depth Percent

O A D A0 R DD D DO AN D 20D O N DO AN
O I I N P S A S R A AR W D V2D AN o N
7 VR AR Y QAN CND 0D D AV AR QAR S2 0470)]
WS SIS SPREEL SIS

Token Limit Token Limit

S

Figure 5: Comparison of SKVQ with KIVI on needle in haystack test. SKVQ achieved higher
scores while using lower bitwidth.

4bit \ 3bit \ 2bit

Method

erho PPL| avg-bits| | PPL| avg-bits| | PPL] avg-bits|
RTN-sym 4.66 4.25 4.98 3.25 26.83 2.25
KVQuant 4.59 4.32-435 | 4.64 3.32-335 | 492 232-235
Ours 460 425 4.63 325 487 225

Table 2: Ablation Study: Comparison of our channel reorder based clipped dynamic quanti-
zation approach with KVQuant(best setting) and symmetric RTN per-token quantization
in different quantization setting. For RTN-sym and our method, we set group-size to 64.
Perplexity is Llama-2-13b test on Wikitext-2 with sequence length 4096.

also benefit from a finer-grained group, and achieve almost lossless compression, which is
shown in Section 4.3.

Needle in Haystack Results. For needle in haystack test, we used Llama2-7b-80k (Fu et al.,
2024) model for our experiments. We set the context to grow from 1k to 32k for a total of 20
intervals, and for each context length, we insert the needle into 15 different positions of the
context. We compare SKVQ with KIVI under the setting of group size 128. For SKVQ, we
set the window size to 128 and reserve 5 attention-sinks, i.e., when the first 5 token cache
pairs slide out of the sliding window, they are retained to full precision instead of quantized
to 2 bits. The residual length in KIVI is set to 128. We follow the method in (Fu et al., 2024)
to calculate the recall, and finally average the scores of all test cases as the overall score. As
shown in Figure 5, in key cache 2bits, value cache 2bits, group size 128 setting, KIVI got
244.5, while our SKVQ achieved 272.2 even with 2 bits key cache and 1.5 bits value cache in
group size 128.

These results demonstrate that it is practical to quantize the key-value cache into extremely
low-bitwidth for these tasks. More result on needle in haystack test can be found in
Appendix 7.

4.3 Ablation Study

In this section, we decompose each part of SKVQ separately in detail and study the effect
from each technique and different parameter settings.

. Method Avg Scoret
Breakdown of different components of SKVQ. We
investigate the accuracy impact of various quantiza- FP16 48.66
tion techniques employed in SKVQ. Initially, we utilize =~ RTN 35.55
RTN and adopt per-token quantization with a group ~ + Window-128 45.73 (10.187)

; Pgipe + Group Clipping ~ 46.44 (0.711)
size of 32. Subsequently, we apply other quantization 7 Channel Reorder 47,99 (1551)

techniques used in SKVQ, including sliding window, |y 0 e ™ 4074 (0.151)

clipping, channel reorder, attention sink, and FP8. The | ppg(g4m3) 48.04 (0.1))

LongBench average scores are presented in Table 3.

The attention sink size is set to 5, meaning the first 5 Tple 3. Ablation Study: The perfor-

token cache pairs are retained at full precision. Our mance gain or loss by applying each

results indicate that sliding-window and channel re- technique in SKVQ based on RTN
method. Quantization setting: kv 2bits
with group size 32.

Published as a conference paper at COLM 2024

Mistral-7b-Instruct-v0.2 Llama2-7b-chat
46.5 36.00

46.0 1 35.751

455 35.50 A
35.25
45.0

35.00 A

Score

44.5 1

34.751
44.01

3
wo0 wl w8 w32 w64 wil28 wo wl w8 w32 w64 wl2s

Figure 6: Ablation Study: Average score of Mistral-7b-Instruct-v0.2 on LongBench under
different window sizes. Quantization setting: KV cache 2bits with group size 128

order techniques significantly enhance accuracy. FP8

(E4M3) represents the use of the FP8 datatype to store

per-group quantization parameters, such as scale and zero-point. In our study, using FP8
results in a relatively minor accuracy decrease compared to FP16. However, at extremely
low-bitwidth and fine-grained group sizes, using FP8 to store quantization parameters sig-
nificantly reduces the average number of bits. For example, with KV 2-bit quantization and a
group size of 32, using FP16 to store quantization parameters results in an average bit count
of 2+ 16 x2/32 = 3, whereas using FP8 results in an average bit count of 2 - 82/32 = 2.5,
which is a 16.7% reduction.

The effect of clipped dynamic quantization with channel reorder. To further demonstrate
the effect of our quantization approach without sliding window, we perform evaluation
by measuring Llama-2-13b perplexity on wikitext2. The result in Table 2 shows that by
only applying channel reorder based clipped dynamic quantization, we have outperformed
KVQuant (Hooper et al., 2024). We set group size to 64 and use FP8 to store quantization
parameter so that the average bits is equal to asymmetric approach adopt in ATOM and
FlexGen. We also reserve the first 5 tokens to FP16 as attention sink. It worth noting that
we are comparing the best score of KVQuant i.e. nuq with 1% outliers are retained to
full-precision, which results in higher storage overhead than SKVQ.

The effect of window size. To further investigate the effect of sliding window on the
final results, we set up different sizes of windows and tested them on LongBench, and the
average scores are shown in the Figure 6. The result shows that the average score increases
as the window size increases. In general, different sub-tasks can all benefit more or less
from the sliding window strategy, and the extra overhead brought by a window with size of
about 128 is negligible in long context scenarios, so we use a window of size 128 in the main
experiments.

The effect of group Size. We vary group size from

Group size | Avg Score? | Avg Bits
128 to 32 to test SKVQ on LongBench, the average

score on LongBench is as shown in Table 4. It shows 16248 ggggg 2212255
that SKVQ can always benefit from finer-grained 32 36.51 75

group. While finer-grained group brings better accu-
racy, it increases the computation overhead for quanti- Taple 4: Ablation Study: Aver-
zation/dequantization and storage overhead for quan- age scores of Mistral-7b-Instruct-v0.2
tization parameters, which is noted as average bits. on GovReport and MultiFieldQA-zh
Since the performance of SKVQ on various tasks does dataset for different group sizes. Quan-
not drop significantly when the group size is set to 128, tization setting: KV cache 2bits, win-
we employ 128 group size in the main experiments. ~ dow size 128.

Published as a conference paper at COLM 2024

5 Conclusion

In this paper, we achieve accurate ultra-low precision KV cache quantization. By channel
reordering, we group similar channels together, and apply group clipping to further mitigate
the outlier problem. We propose a sliding window quantization strategy with filter rules,
which greatly improves the performance of the KV cache quantization method on long
context tasks by reserving a small portion of the cache to full precision. By combining
theses two approaches, we successfully quantize the KV cache to Key 2bits value 1.5 bits
without significant precision loss. We believe this work will further advance the design
of mixed-precision quantization strategies for KV cache . In the future, we will further
optimize the filter rules and the kernel implementation.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hong Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A
bilingual, multitask benchmark for long context understanding. ArXiv, abs/2308.14508,
2023. URL https://api.semanticscholar.org/CorpusID:261245264.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document trans-
former. ArXiv, abs/2004.05150, 2020. URL https://api.semanticscholar.org/CorpusID:
215737171.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing.
Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.
URL https://1msys.org/blog/2023-03-30-vicuna/.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partition-
ing. ArXiv, abs/2307.08691, 2023. URL https://api.semanticscholar.org/CorpusID:
259936734.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit
matrix multiplication for transformers at scale. ArXiv, abs/2208.07339, 2022. URL
https://api.semanticscholar.org/CorpusID:251564521.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-
training quantization for generative pre-trained transformers. ArXiv, abs/2210.17323,
2022. URL https://api.semanticscholar.org/CorpusID:253237200.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hanna Hajishirzi, Yoon Kim, and
Hao Peng. Data engineering for scaling language models to 128k context. ArXiv,
abs/2402.10171, 2024. URL https://api.semanticscholar.org/CorpusID:267682361.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model
tells you what to discard: Adaptive kv cache compression for llms. ArXiv, abs/2310.01801,
2023. URL https://api.semanticscholar.org/CorpusID:263609075.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Deven-
dra Singh Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, L'elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mistral 7b. ArXiv, abs/2310.06825, 2023. URL https://api.semanticscholar.org/
CorpusID:263830494.

10

https://api.semanticscholar.org/CorpusID:261245264
https://api.semanticscholar.org/CorpusID:215737171
https://api.semanticscholar.org/CorpusID:215737171
https://lmsys.org/blog/2023-03-30-vicuna/
https://api.semanticscholar.org/CorpusID:259936734
https://api.semanticscholar.org/CorpusID:259936734
https://api.semanticscholar.org/CorpusID:251564521
https://api.semanticscholar.org/CorpusID:253237200
https://api.semanticscholar.org/CorpusID:267682361
https://api.semanticscholar.org/CorpusID:263609075
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494

Published as a conference paper at COLM 2024

Greg Kamradt. Needle in a haystack - pressure testing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack, 2023.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen,
Michael W. Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantiza-
tion. ArXiv, abs/2306.07629, 2023. URL https://api.semanticscholar.org/CorpusID:
259144954,

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Revealing the dark
secrets of bert. ArXiv, abs/1908.08593, 2019. URL https://api.semanticscholar.org/
CorpusID:201645145.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E. Gonzalez, Ion
Stoica, Xuezhe Ma, and Hao Zhang. How long can open-source llms truly promise on
context length?, June 2023. URL https://1msys.org/blog/2023-06-29-1ongchat.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. ArXiv,
abs/2306.00978, 2023. URL https://api.semanticscholar.org/CorpusID:258999941.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anasta-
sios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of
importance hypothesis for llm kv cache compression at test time. ArXiv, abs/2305.17118,
2023. URL https://api.semanticscholar.org/CorpusID:258947558.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman,
Beidi Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache.
arXiv preprint arXiv:2402.02750, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. In International Conference on Learning Representations, 2016.

Wengi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated
quantization for large language models. In The Twelfth International Conference on Learning
Representations, 2023.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy
Liang, Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative
inference of large language models with a single gpu. In International Conference on
Machine Learning, pp. 31094-31116. PMLR, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M.
Bikel, Lukas Blecher, Cristian Cantén Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V. Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog,
Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models. ArXiv, abs/2307.09288,2023. URL https://api.semanticscholar.org/CorpusID:
259950998.

11

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://api.semanticscholar.org/CorpusID:259144954
https://api.semanticscholar.org/CorpusID:259144954
https://api.semanticscholar.org/CorpusID:201645145
https://api.semanticscholar.org/CorpusID:201645145
https://lmsys.org/blog/2023-06-29-longchat
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:258947558
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998

Published as a conference paper at COLM 2024

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang,
Fengwei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit
transformer language models. Advances in Neural Information Processing Systems, 35:
17402-17414, 2022.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and
Xianglong Liu. Outlier suppression+: Accurate quantization of large language models by
equivalent and effective shifting and scaling. In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. ArXio,
abs/2211.10438, 2022. URL https://api.semanticscholar.org/CorpusID:253708271.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient
streaming language models with attention sinks. ArXiv, abs/2309.17453, 2023. URL
https://api.semanticscholar.org/CorpusID:263310483.

Zhihang Yuan, Lin Niu, Jia-Wen Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu
Sun, Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training
quantization for large language models. ArXiv, abs/2304.01089, 2023. URL https:
//api.semanticscholar.org/CorpusID:257913374.

Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Chenhao Xue, Bingzhe Wu, Zhikai
Li, Qingyi Gu, Yong Jae Lee, Yan Yan, et al. LIm inference unveiled: Survey and roofline
model insights. arXiv preprint arXiv:2402.16363, 2024.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Ligiang Nie.
Wkvquant: Quantizing weight and key/value cache for large language models gains
more. arXiv preprint arXiv:2402.12065, 2024.

Zhenyu (Allen) Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi
Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and
Beidi Chen. H20: Heavy-hitter oracle for efficient generative inference of large language
models. ArXiv, abs/2306.14048,2023. URL https://api.semanticscholar.org/CorpusID:
259263947.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze,
Arvind Krishnamurthy, Tiangi Chen, and Baris Kasikci. Atom: Low-bit quantization
for efficient and accurate llm serving. ArXiv, abs/2310.19102, 2023. URL https://api.
semanticscholar.org/CorpusID:264828796.

12

https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:257913374
https://api.semanticscholar.org/CorpusID:257913374
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:264828796
https://api.semanticscholar.org/CorpusID:264828796

Published as a conference paper at COLM 2024

6 Detailed Implementations

We describe our algorithm as shown in Algorithm 1. The subroutine get_permutation_matrix
and get_group_clipping is described in Section 3.1. It's worth noting that the prologue only
needs to be executed once before deploying, and we do not pay for it during the inference
phase.

Algorithm 1: SKVQ Algorithm

SKVQ Parameter: window size W, group size G, filter rules F < {f1, fo,--- },
processed KV cache length processed < 0
Attention Module Parameter: W;, Wi, W, € RA*d
Prologue:
Py, Py, group_indices <— get_permutation_matrix(calibration_set)
clipping «+ get_group_clipping(calibration_set, P, group_indices)
Wy < P - Wi
W, « P, - W,
end
Input: X € R, Keaches Veache € R"*?, where I is context length(prefill phase i = 0),
I is current input length(prefill phase | = len(prompt), decode phase | = 1)
Algorithm algo(Attention module with SKVQ algorithm):
Q=X-Wg, K=X-W, V=X-W,
Kcache < dequant(Kcache)
Veache < dequant(vcache)
Kcache ¢ Concat<Kcache/ K)
Veache < Concat(vcacher Vv
S < Q- reorder(Kcache)”
O < S -reorder(Vache) - Wo
ctx_len < len(Vache)
indices < [processed : ctx_len — W]
if indices # @ then
kmask < [processed : ctx_len — W; False]
vmask <« [processed : ctx_len — W; False]
for filter in F do
kmask < filter(Kcacne[indices]) A kmask
vmask < filter(Vacne|indices|) A vmask
end
Keache[indices] < clipping_quant(K,cne [indices], kmask)
Vcache | indices] <— clipping_quant(V cache [indices|, vmask)
processed += len(indices)
end
return O
end
function clipping_quant(X, mask):
groups < split_groups(X, group_indices)
quant_cache <— @ for group in groups do
group_min, group_max <— minmax(gruop)
group_min < clipping[group| x group_min
group_max < clipping[group| x group_max
quant_group < group_quant(group_min, group_max, group)
quant_group[mask| < grouplindices]
quant_cache < concat(quant_cache, quant_group)
end
return quant_cache
end

13

Published as a conference paper at COLM 2024

7 More Experimental Results of Needle in Haystack
KIVI
K2V2-g64: 264.2 K2v2-g128: 245.0 K2v1.5-g128: 235.1

1.0

Depth Percent

D 5, .0 @ AN DAY VA H A P O S 00 D DAL DAY V> AN P
SRR RIS oo
Token Limit Token Limit
&
SKVQ(Ours 4
0.4
K2V2-g64: 270.5 K2v2-g128: 271.2 K2v1.5-g128: 272.2
- X
= .
[.
g . 0.2
a .
- .
S .
Q X
7
a .
. 0.0
100.0

P AV P A0 R O AN D O A A VAR H A (DD P A D P AC P DAY DO A AD Y AT O AN DD P AV P A0 R DAY D O A AN Ad O A (DO

PO D NG AN A LA WS AP P A0 DN AR AN P N A P N S A0S S B C R DS P I AT A S A%) R S

SIEELE °”§~‘0‘»°°’¢"§“$‘a&“‘&$ﬁ“ﬁ“ﬁ»§»}°° SO SR ELOE ST 5S AR SR EE T30
Token Limit Token Limit Token Limit

Figure 7: Comparison of SKVQ with KIVI on 32k context length needle in haystack test. The
baseline score is 268.5. We vary the group size from 64 to 128, and vary the quantization bits
from (key 2bits, value 2bits) to (key 2bits, value 1.5bits).

The results in Figure 7 show SKVQ is clearly better than KIVI, especially in K2V1.5-g128,
SKVQ achieve the same level with FP16, while KIVI suffers significant accuracy loss. These
results shows the robustness of our approach.

8 More Results of LongBench Evaluation

We also evaluated LongChat-v1.5-7b-32k and Vicuna-v1.5-7b-16k, which are two famous
long-context models fine-tuned based on Llama2-7b. The results in Table 5 demonstrate
that our SKVQ outperformed previous methods, which highlight the generalizability of our
approach.

Model Method LCC RepoBench-P PR-en TREC 2wikimga GovReport MQA-zh Average
FP16 51.38 46.18 45 69 213 27.79 43.74 41.02
RTN 13.22 17.78 12 0 0.59 2.39 0.61 823
) SmoothQuant 40 29.27 194 1825 8.33 14.86 7.19 22.37
Vicuna-v1.5-7b-16k - pprg 40.64 414 375 595 15.92 23.16 19.41 32.68
KIVI 49.32 4335 5.56 68 233 2447 38.86 39.19
SKVQ 50.98 4407 6 69 22.04 2655 40.82 4020
FP16 54.89 59.05 305 665 2458 30.89 3533 47.27
RTN 511 373 15 0 0.42 051 0.08 2461
SmoothQuant 3621 3191 245 365 13.94 17.21 6.59 24.70
LongChat-v1.5-7b-32k pprcy 404 432 8 61 17.31 24.79 20.01 34.01
KIVI 49.86 5477 205 66 23.79 28.75 31.58 4322
SKVQ 55.01 57.24 22 67 24 30.03 31.68 4537

Table 5: Evaluation resultes of Vicuna and LongChat on LongBench. Group-size(average)
128, key-cache 2bit, value-cache 2bit, window-size 128. We abbreviated PassageRetrieval as
PR and MultiFieldQA as MQA. We highlight the result of our method.

9 Memory and Latency Analysis

In order to further illustrate the benefits of quantizing KV cache to extremely low-bitwidth,
we use LLM-Viewer (Yuan et al., 2024) to analyze the benefits in terms of memory consump-
tion and inference latency. The result is shown in Table 6. When batch size and sequence

14

Published as a conference paper at COLM 2024

length are relatively large, KV cache dominates almost all the memory consumption, and
load KV cache becomes the performance bottleneck of the entire inference system. By
quantizing KV cache with SKVQ, we can significantly reduce both latency and memory
consumption. The analysis result shows SKVQ enables 1M context length in a single A100-
80GB. As for the inference latency, we show the results of decoding phase, which domain
the inference time in long context tasks. In the case of batch size 128 and sequence length
200Kk, the theoretical 7x speedup can be achieved.

Batch Size | Seq Length | Latency(ms)/ Memory(GB) | FP16 | KV4 | KV2
Inference Time 10.6 7.5 7
32k Memory Access 216 | 153 | 143
Memory Consumption 29.7 172 | 151
1 Inference Time 231 | 108 8.7
128k Memory Access 47.2 22 17.8
Memory Consumption 80.1 | 29.7 | 214
Inference Time 325 | 133 10
200k Memory Access 66.3 27 20.5
Memory Consumption 118 39.2 | 261
Inference Time 2741 | 76.6 | 43.7
32k Memory Access 559 156 | 89.1
Memory Consumption 1100 | 282 147
64 Inference Time 1100 | 286.4 | 154.8
128k Memory Access 2200 | 584 | 316
Memory Consumption 4300 | 1100 | 551
Inference Time 1700 | 443 | 238.1
200k Memory Access 3400 | 905 485
Memory Consumption 6700 | 1700 | 853
Inference Time 541.8 | 146.8 81
32k Memory Access 1100 | 299 165
Memory Consumption 2200 | 550 282
128 Inference Time 2100 | 566.4 | 303.1
128k Memory Access 4400 | 1200 | 618
Memory Consumption 8600 | 2200 | 1100
Inference Time 3300 | 881.1 | 469.7
200k Memory Access 6800 | 1800 | 958
Memory Consumption 13400 | 3400 | 1700

Table 6: LLaMA-7B memory and latency analysis with roof line model. The hardware
platform is A100 80G, we assume flash-attention is used.

15

Published as a conference paper at COLM 2024

10 Comparison Between Smooth and Reorder

To improve the accuracy of per-token quantization, we utilize the reorder to cluster similar
channels together. There are also other methods to improve the accuracy, one of them is
smoothing, which is adopted in (Xiao et al., 2022; Shao et al., 2023; Yue et al., 2024). This
approach smooth the difference between channels by multiplying an extra factor before
quantization. We explore and compare smoothing with reordering, the experimental results
are shown in Table 7. SKVQ-smooth represents our sliding window strategy together with
smoothing and SKVQ-reorder represents the approach we described in Section 3.1. The
results demonstrate that reordering can effectively improve the per-token quantization
performance while the smoothing cannot. This is mainly because smoothing does not take
into account the differences in token dimensions.

Model Method LCC RepoBench-P PR-en TREC 2wikimqa GovReport MQA-zh Average
FP16 52.33 44.05 10.25 63 32.09 27.29 11.39 38.50
LLaMA-2-7B-chat ~ SKVQ-reorder 50.69 454 55 63 28.5 27.07 10.7 37.50
SKVQ-smooth 48.93 40.12 4.75 62.5 26.75 23.19 7.93 34.77
FP16 50.54 52.1 1525 685 13.21 27.52 723 38.83
LLaMA-2-13B-chat SKVQ-reorder 49.53 49.76 1225 675 14.03 26.68 6.63 37.53
SKVQ-smooth 47.78 47.28 7.5 67 11.61 24.07 5.55 35.34
FP16 68.06 60.46 17.71 68 10.87 20.09 17.1 45.51
Mistral-7B SKVQ-reorder 67.81 60.54 13.21 67 10.91 17.72 15.9 43.47
SKVQ-smooth 64.18 57.95 9.49 63.5 10.11 13.99 12.77 41.52
FP16 55.07 48.96 60 70 22.63 31.18 42.74 48.66
Mistral-7B-Instruct SKVQ-reorder 54.86 49.05 56.42 70 20.94 30.82 42.4 46.23
SKVQ-smooth 49.83 45.74 40.42 66 17.11 28.32 30.32 42.11

Table 7: Comparison of different methods(i.e. smooth v.s. reorder) on LongBench. Group-
size(average) is set as 128, key-cache 2bit, value-cache 2bit, window-size 128. We abbreviated
PassageRetrieval as PR and MultiFieldQA as MQA.

16

	Introduction
	Related Work
	Method
	Clipped Dynamic Quantization with Channel Reorder
	Sliding Window Quantization Strategy

	Experiments
	Settings
	Main Results and Analysis
	Ablation Study

	Conclusion
	Detailed Implementations
	More Experimental Results of Needle in Haystack
	More Results of LongBench Evaluation
	Memory and Latency Analysis
	Comparison Between Smooth and Reorder

